Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yong-Tao Wang,* Gui-Mei Tang and Da-Wei Qin

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250100, People's Republic of China

Correspondence e-mail: ceswyt@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.186$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Cocrystal of 2,5-di-4-pyridyl-1,3,4-oxadiazole and malonic acid (1/1)

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$, a single $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond links the two molecules. In addition, $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link these units into a two-dimensional framework.

Comment

Hydrogen bonding is important in the areas of crystal engineering, supramolecular chemistry, materials science and biological recognition (Desiraju, 1989; Jeffrey \& Saenger, 1991; Holman et al., 2001). Recently, angular dipyridyl-donor basic compounds, such as 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (bpo), have been used to produce a series of infinite/discrete coordination polymers/supramolecules with interesting structures and properties (Wang, Tang \& Qin, 2005; Dong et al., 2003; Du et al., 2005, and references therein). In our effort to characterize the properties of cocrystals of fatty diacids with linear/angular base components and to further understand the role of synthons in crystal engineering, we have prepared and determined the crystal structure of the acid-base cocrystal (I), consisting of bpo and the most typical fatty carboxylic acid, malonic acid.

(I)

The asymmetric unit consists of one bpo molecule and a molecule of malonic acid (Fig. 1). The geometry of the bpo

Figure 1
View of (I), showing displacement ellipsoids at the 30% probability level. H atoms are represented by circles of arbitrary size.

Received 7 October 2005 Accepted 27 October 2005 Online 5 November 2005

Figure 2
A packing diagram, showing hydrogen bonds as dashed lines.
molecule is very similar to that of the parent structure (Stockhause et al., 2001); likewise, the malonic acid geometry is close to that of free malonic acid (Vishweshwar et al., 2003). In the crystal structure, a two-dimensional framework is formed via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 2).

Experimental

A mixture of 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ($112 \mathrm{mg}, 0.5 \mathrm{mmol}$) (Wang, Tang, Qin \& Duan, 2005) and malonic acid ($52 \mathrm{mg}, 0.5 \mathrm{mmol}$) was recrystallized from methanol and water in about 77% yield $(126 \mathrm{mg})$; from this, a colourless block suitable for X-ray diffraction was selected. Analysis found: C 54.78, H3.65, N 17.17%; calculated: C 54.88, H 3.68, N 17.07%; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): v 2452, 1708, 1602, 1570, 1534, 1418, 1271, 1211, 1018, 835, 743, 723.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}$	$Z=2$
$M_{r}=328.29$	$D_{x}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=5.1232(8) \AA$	Cell parameters from 100 $b=9.5108(15) \AA$ $c=15.566(3) \AA$
$\alpha=85.297(3)^{\circ}$	$\theta=17-23^{\circ}$
$\beta=81.159(3)^{\circ}$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\gamma=86.289(3)^{\circ}$	$T=293(2) \mathrm{K}$
$V=745.9(2) \AA^{\circ}$	Block, colourless
Data collection	$0.26 \times 0.15 \times 0.13 \mathrm{~mm}$
Bruker SMART CCD area-detector	
\quad diffractometer	2692 independent reflections
φ and ω scans	1843 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.014$
$(S A D A B S ;$ Sheldrick, 1996)	$\theta_{\max }=25.5^{\circ}$
$\quad T_{\text {min }}=0.971, T_{\text {max }}=0.986$	$h=-6 \rightarrow 4$
3788 measured reflections	$k=-11 \rightarrow 11$
	$l=-17 \rightarrow 18$

Refinement

Refinement on F^{2}
All H-atom parameters refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.186$
$S=1.00$
2692 reflections
265 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1148 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 1^{\text {i }}$	0.99 (7)	1.77 (7)	2.666 (4)	149 (5)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 4^{\text {ii }}$	0.97 (3)	1.66 (3)	2.611 (3)	166 (3)
C9-H9 . .N3	0.95 (3)	2.61 (3)	2.938 (3)	101 (2)
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~N} 3^{\text {iii }}$	0.95 (3)	2.55 (3)	3.327 (3)	139 (2)
C11-H11 . $\mathrm{O}^{\text {ii }}$	0.92 (3)	2.59 (3)	3.298 (4)	134 (2)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {iv }}$	0.94 (3)	2.48 (3)	3.146 (4)	128 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x+1,-y+2,-z+1$; (iii)
$-x,-y+1,-z+1$; (iv) $x+1, y, z$.
All H atoms were refined independently with isotropic displacement parameters $[\mathrm{O}-\mathrm{H}=0.97$ (4) and 0.99 (7) $\AA, \mathrm{C}-\mathrm{H}=0.89$ (4)0.97 (3) Å].

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to YTW).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.
Dong, Y.-B., Ma, J.-P., Huang, R.-Q., Smith, M. D. \& zur Loye, H.-C. (2003). Inorg. Chem. 42, 294-300.
Du, M., Zhang, Z.-H. \& Zhao, X.-J. (2005). Cryst. Growth Des. 5, 1119-1208.
Holman, K. T., Pivovar, A. M., Swift, J. A. \& Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stockhause, S., Wickleder, M. S., Meyer, G., Orgzall, I. \& Schulz, B. (2001). J. Mol. Struct. 561, 175-183.
Vishweshwar, P., Nangia, A. \& Lynch, V. M. (2003). Cryst. Growth Des. 3, 783790.

Wang, Y.-T., Tang, G.-M. \& Qin, D.-W. (2005). Acta Cryst. E61, o3623-03624.
Wang, Y.-T., Tang, G.-M., Qin, D.-W. \& Duan, H.-D. (2005). Acta Cryst. E61. Submitted.

